
E155 FA22: Lab 6

Lab 6: The Internet of Things and Serial

Peripheral Interface

Learning Objectives

By the end of this lab you will have...

● Designed and built a simple IoT device

● Written C libraries using the CMSIS device templates to implement the SPI functionality

of the MCU

● Interfaced with a temperature sensor module over an SPI link

● Interfaced the MCU with an ESP8266 module over a UART link

● Use the logic analyze functionality of the scope in the Digital Lab to debug serial

communication protocols and export captured signal data.

● Written a simple HTML page to control and display data from the peripherals connected

to your MCU.

Requirements

Build an internet-accessible device to control an onboard LED and measure ambient

temperature. Use an ESP8266 with the provided web server code to host the webpage and use

the onboard MCU GPIO and SPI peripherals to toggle an LED and to read temperature from a

provided sensor chip. An end-user must be able to turn the LED ON and OFF and view the

current temperature from the webpage.

In addition to the standard deliverables in your report (summary, schematic, etc.), your report

also must include an example of a SPI read/write interaction with all pertinent data signals (e.g.,

CE, SCK, SDO, SDI) captured using the logic analyzer functionality of the oscilloscopes in the

Digital Lab.

At heart, this lab asks you to consult the MCU documentation to learn how to directly control

the SPI memory-mapped peripheral on the MCU, so refrain from consulting any other C device

drivers that can be found on the web or elsewhere.

Note that for this lab your SPI device driver must use the Common Microcontroller Software

Interface Standard (CMSIS) device templates included in the stm32l432xx.h device header. See

the provided example device drivers on the course GitHub repository for an example. The GPIO

driver provides a good example of how to use the information included in the CMSIS headers.

Note: There are only a limited number of ESP8266 boards and DS1722 SPI temperature

sensors available for this lab. Please do not remove these devices from the digital lab so that

everyone can access these shared resources.



E155 FA22: Lab 6

ESP8266 Web Server

Broadly speaking, everything that you see on the internet is the product of one computer

presenting text to another. The text is often formatted in a special, internet-specific, way that

includes information about how to display it which is referred to as hypertext. (Forgive the early

internet engineers for this indulgence; I’m sure it sounded really cool at the time.) Hypertext is

specified using a compact programming language called hypertext markup language or HTML.

It is transferred over the internet based on a predefined set of agreements between all

computers which is referred to as the hypertext transfer protocol or HTTP. The latter most of

these acronyms should be familiar: whenever you type http:// into a web browser you are

informing your computer that you are attempting to retrieve hypertext from the address that

follows.

There are two common tools that interact with HTTP: the web browser, which lives on a

receiving computer, sends internet requests, and renders the received hypertext; and the web

server, which listens for requests from the internet and sends out hypertext in response.

Implementing an HTTP web server on the ARM microcontroller is a non-trivial task. Instead,

you will be using an ESP8266, a small WiFi development board which incorporates a TCP/IP

stack as well as onboard WiFi and an integrated antenna. You are provided an Arduino language

program which hosts an HTTP web server with an HTML page generated by the MCU.

ESP8266-MCU Interface

Download the Lab 6 starter code and support files from the class web page. You may use any

code we have developed in class to help you write your code.

ESP8266 development boards are available from the E155 supply closet and are

pre-programmed with the webserver code. The SSID for the WiFi access points associated with

each board is Lab6_ESP_xx where xx is the number listed on each board.

The ESP8266 board requires 3.3 V power. However, it has an onboard regulator so you can

power the board with between 3-6 V using the V+ and GND pins. If after supplying power to the

chip and waiting for it to initialize you do not see the expected WiFi network appear, you may

need to reprogram the chip with the provided code.

The MCU must supply a webpage to the ESP8266, and must interpret any web browser requests

from the ESP8266. The devices interface through a 125000 baud serial UART connection on the

MCU and the UART TX and RX lines of the ESP8266. Note that with a UART connection the

receive and transmit lines should be crossed. In other words, the TX of the transmitter should be

connected to the RX of the receiver and the RX of the transmitter should be connected to the TX

of the receiver.

The protocol is as follows:



E155 FA22: Lab 6

1. When the ESP8266 updates the webpage from the MCU, it sends the most recent request

from the client, within '/REQ:'...'\n'. For example, a user accessing the page

http://<server_address>/ledon would result in the request '/REQ:ledonn' being sent to

the microcontroller. A user accessing the root webpage of the server,

http://<server_address>/ would result in the request '/REQ:\n'. Note that you must use

http:// and not https://.

2. The MCU then transmits the entire web page to the ESP8266. The ESP8266 expects a

webpage encoded as an HTML file. Therefore the webpage must start with '<!DOCTYPE

html><html>' and end with '</html>'. The ESP will wait for either </html> or 200 ms

from the last byte sent over serial before terminating the HTTP request and forwarding

the content to the web browser.

The ESP8266 will create a WiFi access point named whatever SSID is labeled on the board.

Connect to this WiFi network, and then go to http://192.168.4.1/. Beware that the ESP is slow

and it may sometimes take a few attempts to connect.

Digital Temperature Sensor

The temperature sensor you will interface with for this lab is the DS1722 Digital Thermometer

with SPI/3-Wire Interface from Maxim Integrated. This chip is an example of a simple

peripheral that supports an SPI interface. You will need to get a DS1722 chip from the E155

stock cabinet mounted on an SOIC-8 breakout board. There are some boards that are already

soldered, but if you are unable to find any pre-soldered boards to use, there may also be some

chips and extra breakout boards you can solder yourself. After getting a board, consult the

DS1722 datasheet to correctly wire up the device. Make sure to thoroughly read the data sheet

and refer to the pinout before attempting to interface with the device!

The figure below shows the corresponding pinout between the SMT pads and the header pins on

the breakout board for your convenience.



E155 FA22: Lab 6

MCU Hardware and the Internet of Things

The last component of this lab is to write a program that parses a request from the ESP8266,

toggles the LED state as necessary, reads from the SPI temperature sensor, and uses this data to

generate a webpage that is transmitted to the ESP8266. Make sure that the FPGA code on your

board does not interfere with any of the pins which you may want to use for your sensors or else

you will experience undefined behavior.

You will need to write an HTML webpage that displays dynamic temperature data as well as

creating requests to change the state of the LED. There are many ways to do this, but we suggest

the following resources for information on HTML formatting and interactive elements:

● http://www.w3schools.com/html/default.asp

● http://www.w3schools.com/html/html_forms.asp

The final product of this lab is a simple example of an emerging class of devices called the

Internet of Things. Proponents of these devices argue that everything—from your washing

machine to your car to giant factories—should be connected to the internet so that the shared

data can be used to optimize and improve societal functions. Internet-controlled lighting, and

internet-accessible sensors are two promising domains for the field, and are exemplified in this

lab.

Hints

The time spent on this lab has been highly variable in the past. If SPI doesn’t work on your first

try, it can take a long time to debug because there are many different settings, all of which have

to be correct. You can increase the chance of SPI working by carefully studying the MCU

documentation before coding. Before connecting the peripheral device, look at the SPI outputs

on a logic analyzer and make sure that the clock, SDO, and the chip enables are matching your

expectations. Fix your code if they do not. Then attach the peripheral and recheck all the signals

including SDI.

What to Turn In

When you are done, have your lab checked off by the instructor. You should thoroughly

understand how it works and what would happen if any changes were made. Turn in your lab

writeup including the following information:

● Schematics of the breadboarded circuit.

● A screen capture (exported from the scope, not a photo captured using a camera) of an

example SPI transaction captured on the oscilloscope/logic analyzer.

● Your source code.

● How many hours did you spend on the lab? This will not count toward your grade.

http://www.w3schools.com/html/default.asp
http://www.w3schools.com/html/html_forms.asp

